Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline.
نویسندگان
چکیده
Ecosystems worldwide are facing increasingly severe and prolonged droughts during which hydraulic failure from drought-induced embolism can lead to organ or whole plant death. Understanding the determinants of xylem failure across species is especially critical in leaves, the engines of plant growth. If the vulnerability segmentation hypothesis holds within leaves, higher order veins that are most terminal in the plant hydraulic system should be more susceptible to embolism to protect the rest of the water transport system. Increased vulnerability in the higher order veins would also be consistent with these experiencing the greatest tensions in the plant xylem network. To test this hypothesis, we combined X-ray micro-computed tomography imaging, hydraulic experiments, cross-sectional anatomy and 3D physiological modelling to investigate how embolisms spread throughout petioles and vein orders during leaf dehydration in relation to conduit dimensions. Decline of leaf xylem hydraulic conductance (Kx ) during dehydration was driven by embolism initiating in petioles and midribs across all species, and Kx vulnerability was strongly correlated with petiole and midrib conduit dimensions. Our simulations showed no significant impact of conduit collapse on Kx decline. We found xylem conduit dimensions play a major role in determining the susceptibility of the leaf water transport system during strong leaf dehydration.
منابع مشابه
Outside-Xylem Vulnerability, Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration.
Leaf hydraulic supply is crucial to maintaining open stomata for CO2 capture and plant growth. During drought-induced dehydration, the leaf hydraulic conductance (Kleaf) declines, which contributes to stomatal closure and, eventually, to leaf death. Previous studies have tended to attribute the decline of Kleaf to embolism in the leaf vein xylem. We visualized at high resolution and quantified ...
متن کاملDecline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture.
Across plant species, leaves vary enormously in their size and their venation architecture, of which one major function is to replace water lost to transpiration. The leaf hydraulic conductance (K(leaf)) represents the capacity of the transport system to deliver water, allowing stomata to remain open for photosynthesis. Previous studies showed that K(leaf) relates to vein density (vein length p...
متن کاملWhy are leaves hydraulically vulnerable?
As plant tissues dehydrate, water transport efficiency declines, a process typically attributed to air obstruction (embolism) in the xylem. Trifiló et al. (pages 5029– 5039) dissect leaf hydraulic vulnerability and show that both xylem and living tissues may be important. If confirmed and clarified, an important role for outside-xylem hydraulic decline will change our understanding of how plant...
متن کاملLeaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species.
Hydraulic conductance of leaves (K(leaf)) typically decreases with increasing water stress. However, the extent to which the decrease in K(leaf) is due to xylem cavitation, conduit deformation or changes in the extra-xylary pathway is unclear. We measured K(leaf) concurrently with ultrasonic acoustic emission (UAE) in dehydrating leaves of two vessel-bearing and two tracheid-bearing species to ...
متن کاملXylem traits mediate a trade-off between resistance to freeze-thaw-induced embolism and photosynthetic capacity in overwintering evergreens.
Hydraulic traits were studied in temperate, woody evergreens in a high-elevation heath community to test for trade-offs between the delivery of water to canopies at rates sufficient to sustain photosynthesis and protection against disruption to vascular transport caused by freeze-thaw-induced embolism. Freeze-thaw-induced loss in hydraulic conductivity was studied in relation to xylem anatomy, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The New phytologist
دوره 213 3 شماره
صفحات -
تاریخ انتشار 2017